
Analyzing the impact of human bias on human-agent
teams in resource allocation domains

(Extended Abstract)
Praveen Paruchuri, Pradeep Varakantham*, Katia Sycara, Paul Scerri
Robotics Institute, Carnegie Mellon University, {paruchur,katia,pscerri}@cs.cmu.edu

*School of Information Systems, Singapore Management University, pradeepv@smu.edu.sg

ABSTRACT
As agent-human teams get increasingly deployed in the real-world,
agent designers need to take into account that humans and agents
have different abilities to specify preferences. In this paper, we fo-
cus on how human biases in specifying preferences for resources
impacts the performance of large, heterogeneous teams. In partic-
ular, we model the inclination of humans to simplify their prefer-
ence functions and to exaggerate their utility for desired resources.
We then study the effect of these biases on two different problems,
which are representative of most resource allocation problems ad-
dressed in literature.
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1. INTRODUCTION
A range of exciting applications involve humans and agents work-

ing along side each other to achieve a complex objective. Do-
mains for such applications include search and rescue[2], disaster
response [5] and many others. Researchers envision automating
the allocation of shared resources in these domains using the dis-
tributed constraint optimization problems (DCOPs)[4]. For exam-
ple, access to satellites, robots, computation or space may be au-
tomatically assigned using DCOPs. Due to the computational load
and communication intensity of these algorithms, humans in the
team will need to communicate their preferences and utilities to a
proxy that executes the algorithm on their behalf. If there are many
resources these preferences may be communicated incompletely or
approximately. However, agents participating in the allocation pro-
cess will be able to precisely and completely specify their prefer-
ences for all resources. The question addressed by this paper is
what happens to the quality of the overall resource allocation when
human and agent preference specifications differ in this way.

Preference elicitation is a difficult problem that takes a lot of
time and effort for humans. Many well known human biases come
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into play, either consciously or sub-consciously, when reporting the
preferences, for instance the utility of a resource. In this paper, we
use a combination of empirical and theoretical analysis to under-
stand the impact of these biases using a DCOP algorithm.

We study the effect of two commonly known models of human
biases [1] on two commonly studied resource allocation problems
using two allocation algorithms. To be able to compute solutions
to large problems quickly, we used the Distributed Stochastic Al-
gorithm (DSA) [7]. Our expectation is that there will be very little
change to the overall utility on average. This is because the solution
provided by DSA is dependent on the local ranking of resources
and not on the absolute utilities of the resources to the agent.

2. PROBLEMS AND MODELS
In this section, we provide a brief background of the motivating

problems, models used to represent the problems and the approach
employed to solve the models. Specifically, we start with describ-
ing two generic distributed resource allocation problems:

2.1 Problem 1: Discrete Resource Allocation
In this domain, resources need to be allocated to a group of

agents and humans, E based on their preferences [6]. For ease of
explanation, we assume only one resource is allocated to one agent
or human. We model this domain as a DCOP as follows: Each
agent/human has a variable, represented as e. The values that the
variable can take correspond to the resource allocated to the agent.
This domain for variable e is specified as De and belongs to the set
1, 2, · · · , R. The utility for e when a resource, re ∈ De, is allo-
cated to e is

ue(re) = L ∗ Ire �=0 ∗ (1−
∏

ẽ∈E,ẽ�=e

Ire �=rẽ ) + pe(re), (1)

where pe(re) is the preference value of agent e for resource r
(soft constraint) and L is a large negative number that represents the
penalty for allocating one resource to two different entities (hard
constraint) and Icondition is 1 when condition = true and is 0
when condition = false.

2.2 Problem 2: Distributed Event Scheduling
In this domain, M meetings need to be scheduled for humans

and agents (acting on behalf of humans). A meeting, m can require
multiple humans, Em and a human, e could be part of multiple
meetings, Me. Furthermore, each human/agent, e has preferences
over the time slots, pte and meetings, pme . Given this information,
the goal is to compute a schedule which maximizes the utility of
the team. This domain is modeled as a DCOP by [3] as follows:
(a) Each agent/human, e has multiple variables, Me, corresponding
to all the meetings where e is required.
(b) The values for each variable correspond to the time slots, where
a meeting can be scheduled. This domain for variable m ∈ Me is
specified as De

m and belongs to the set 1, 2, · · · , T , where T is the
set of time slots available in which a meeting can be scheduled.
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(c) If a meeting, m for e is scheduled at tme , then the utility for e is
defined as

um
e (tme ) = L ∗ (1−

∏

t̃≤T,t̃ �=tme ,tme �=0

It̃ �=tme
)∗

(1−
∏

ẽ∈Em,e�=ẽ

Itme =tmẽ
) + (pe(m) + pme (tme )) (2)

Here, L is a large negative number that represents a penalty for
scheduling the same meeting at two different time slots and other
such cases. (pe(m) + pme (tme )) represents the preferences of the
humans (soft constraints).

3. BIASES CONSIDERED

3.1 Bias 1: Simplification of preferences
As shown in [1], humans tend to simplify preference values when

faced with problems where multiple factors need to be considered.
One popular way of simplifying preferences is thresholding. For-
mally, this involves approximating the preference function over a
variable v, pve() as a function that has zero corresponding to all but
the top “k" values in its range. In general, it could be a “multi-step"
step function and defined as follows (with ordering of thresholds
given as thres1 > thres2 > · · · ):

p̃ve(d) = max
ˆval

pve(d̂), if pve(d) > thres1

= thres1, if thres2 ≤ pve(d) ≤ thres1

= · · · · · ·
Instead of a threshold, humans may simply limit themselves to

specifying some number of top preferences. Specifically, we con-
sider the scenario where humans specify preferences for only the
most important resources while ignoring the rest. The modified
function for this preference simplification is defined as:

p̃ve(d) = pve(d), if d ∈ maxK(pve)

= 0, otherwise

3.2 Bias 2: Preference Exaggeration
This bias of humans arises due to exaggeration of the importance

of certain features over others. This involves increasing the prefer-
ence function value of a variable v, pve() for the top preferred value
assignments. The modified function for this type of preference ex-
aggeration is defined as:

p̃ve(d) = S ∗ pve(d) +A, if d ∈ maxK(pve())

= 0, otherwise

maxK(pve()) provides the top k values in the range of the func-
tion pve(), S and A are scaling and addition factors of exaggeration.

4. ALGORITHM FOR SOLVING DCOPS
Distributed Stochastic Algorithm (DSA) is the algorithm that we

employ for solving DCOPs. It should be noted that DSA is the
only algorithm that can realistically scale to the type of problems
considered in this paper. The following key property of the DSA
algorithm that will be very useful for our analysis.

PROPOSITION 1. For DCOP problems 1 and 2, the solution
provided by DSA is reliant on ranking of preference values and not
on the actual preference values.

5. IMPACT OF BIASES
In domains where the ordering of preference values remain the

same as the original preferences after applying the human biases,
we believe that according to Proposition 1 the impact will be zero.
We further believe that even if there are disruptions to the prefer-
ence order (due to human biases), DSA will provide solutions that

are close to the optimal solution obtained with the original prefer-
ence function. A key reason for this belief is that for large problem
instances of interest, we expect to find that many solutions will have
approximately the same utility.

We considered four different types of preference approximations
in our experiments: Hch represents the problem where humans
change their preferences using biases 1 and 2 (explained earlier)
and Bch represents the case where both humans and agents change
their preferences using bias models 1 and 2. The third approxima-
tion, EHch enhances Hch, where zero valued preferences are con-
sidered valid and would account for cases where preferences for a
resource/time/event were decreased to zero from a positive value.
Similarly, the fourth approximation, EBch enhances Bch.

Using these four preference approximations we performed dif-
ferent types of experiments. The parameters varied for the discrete
resource allocation domain include: (a) Number of agents (|E|);
(b)Number of resources (R); (c) Number of top choices reported
by the human (corresponds to Bias 1, expressed as maxK); and (d)
Exaggeration factor (corresponds to Bias 2, expressed using S and
A). Similarly, the parameters varied for distributed event schedul-
ing are: the domain size (Number of agents/humans E, meetings
M , maximum number of agents per meeting Em, number of meet-
ings per agent Me and time slots t), the number of top choices
reported (Bias 1 captured using maxK) and the exaggeration fac-
tor (Bias 2 expressed using the terms S and A). We performed a
large scale simulation involving nearly 90 hours of computer sim-
ulation time. Both Uniform and Gaussian distributions were used
to generate utilities for each agent across the various resources or
meetings. Our main results can be summarized as follows:

(a) Across the various sizes of problem settings, the reward loss
for the four variants of the DSA algorithm are within 10% of the
DSA solution (within 7% for the enhanced versions) on an average
while the random policy is atleast 30% away from optimal.

(b) Our experiments studying the effects of Bias 1 show that as
long as humans specify their top few (>= 2) choices correctly, they
will have negligible impact on the team utility.

(c) Our experiments studying the effects of Bias 2 show that
exaggerating the preference values has little effect on team utility
while having a significant effect on the individual subgroup utilities
(i.e. agent and human subgroups). However, we could not find a
systematic way to exploit this effect to favor a particular subgroup.
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